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Abstract

Two definitions of virtual age are considered. The first one is based on the fact that a system’s deterioration depends on an
environment. In a more severe environment deterioration is more intensive and, therefore, the corresponding virtual age is larger than the
calendar age. The second approach defines virtual age at the moment of switching from one regime to another. It is shown that both
definitions coincide only for the linear scale transformation in the lifetime distribution functions.
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1. Introduction

Our recent paper [1] was devoted to defining and
discussing two types of virtual age: the statistical and the
information-based virtual ages. In the current note we
investigate further only the first notion, expanding it to the
important for the accelerate life testing case. The main goal
is to understand the underlying assumptions and to discuss
the implications of the considered models. Specifically, we
prove that the cumulative exposure model [2], which is
widely used in accelerated life testing, is properly justified
only for the case of the accelerated life model (ALM) with a
linear scale transformation.

Two main approaches to defining virtual age will be
considered. The first one, which defines ‘‘the statistical
virtual age” is based on an assumption that lifetimes in
different environments are ordered in the sense of the
(usual) stochastic ordering. Equivalently, this assumption
can be also interpreted in terms of the corresponding
ALM. This reasoning also helps in recalculation of age,
when one regime (stress) is switched to another. We will
show that the defined recalculated virtual age is equal to
the statistical virtual age at the moment of switching only
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for the case of the linear ALM. When this assumption does
not hold, additional assumptions should be imposed on the
corresponding distribution function after the switching.

2. Statistical virtual age

The content of this section mostly follows Section 3
of Finkelstein [1]. We put more emphasis on justification
and interpretation of the model and on a more detailed
discussion of the notions involved.

Consider a degrading item which operates in a baseline
environment and denote the corresponding Cdf of time to
failure by Fy,(7). We will use the terms environment, regime
or stress interchangeably. By “degrading” we mean that
the quality of performance of an item is decreasing in some
suitable sense, €.g., a corresponding wear is increasing. We
will implicitly assume that degradation or wear is additive,
but formally the virtual age can be defined without this
assumption as well. Let another statistically identical item
be operating in a more severe environment with the Cdf of
time to failure Fy(z). Assume for simplicity, that environ-
ments are not varying with time and that distributions are
absolutely continuous and denoted by Ay(?) and A7) the
corresponding failure rates. The time-dependent stresses
can be also considered [3]. We want to establish an age
correspondence between the systems in two regimes
considering the baseline as a reference one. It is reasonable
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to assume that degradation in the second regime is more
intensive and therefore the time for accumulating the same
amount of degradation or wear is smaller than in the
baseline one. Therefore, assume that the corresponding
lifetimes are ordered in terms of the (usual) stochastic
ordering [4] as

Fyt)<Fy(1), t e (0,00). (1)

It should be emphasized that this is our assumption.
Although this ordering naturally models an impact of a
more severe environment, other weaker orderings can, in
principle, describe probabilistic relationships between the
corresponding lifetimes in two regimes (e.g., ordering of
the mean values, which, in fact, does not lead to the
forthcoming reasoning).

Inequality (1) implies the following equation:

Fy() = Fo(W(@0), W(0)=0, te(0,00), )

where the function W(f)>t is strictly increasing. This
follows after applying the inverse function to both parts
of (2):

W(t) = Fy ' (Fs(1))

and noting that the superposition of two increasing
functions is also increasing. Thus, Eq. (2) can be inter-
preted as a general ALM [3,5] with a scale transformation
function W(¢). As this function is differentiable, it can be
interpreted as an additive degradation function:

W(t) = /Ot w(u) du, 3

where w(f) has a meaning of a degradation rate. Without
loosing generality, we assume for convenience that in the
baseline environment the degradation rate is equal to 1.

Definition 1. Let 7 be a chronological age of an item in the
baseline environment. Assume that the ALM (2) describes
the lifetime of another statistically identical item, which
operates in a more severe environment for the same time .

Then the function W(t) defines the statistical virtual age
of the second item in the time scale ¢ of the first one or,
equivalently, the inverse function W~ '(r) defines the
statistical virtual age of the first item in the time scale of
the second one.

This definition is, in fact, about age correspondence in
different regimes. It can be interpreted in the following
way. An item that was operating in a more severe regime
for the time ¢ ‘acquires’ the statistical virtual age W(¢)>t
which corresponds to the chronological age ¢, if this item
would have been operating in a baseline regime. A similar
interpretation holds for the inverse regime sequence. The
starting statistical virtual age in this case is an inverse
function W~'<(7), which can be easily seen after sub-
stituting in Eq. (2) the inverse function W~ '(¢) instead of .
Usually, we will omit statistical in what follows. Therefore,
the term virtual age will often mean statistical virtual age of
Definition 1.

When the failure rates (or the corresponding Cdfs) are
given, or estimated from the data, the ALM defined by
Eq. (2) can be viewed as an equation for obtaining the
virtual age W(¢):

t 240)
exp{—/o As(u) du} = exp{—/o Ap(u) du}

! W)
N /0 Ju() du = /0 J(u) du )

Hence, the virtual age W(¢) is uniquely defined by Eq. (4)
and W(t)— oo, as t— oo; W(0) =0. Similar to (4), the
virtual age W~(¢) is obtained from the following equation:

t w1
/ Ap(u)du = / As(u) du.
0 0

Eq. (4) can be interpreted in terms of the cumulative
exposure model [2], i.e., the virtual age W(¢) ‘produces’ the
same population cumulative fraction of units failing in a
more severe environment as the age ¢ does in the baseline
one.

Example 1. Let the failure rates in both regimes be
increasing exponential functions, therefore defining the
corresponding Gompertz distributions, which are used for
describing human mortality:

Ao(r) = ocexp{ft}, A1) = wexp{nt}, o, f, p,n>0.

Let, for simplicity, o« = g = 1. Then 5> f§ and the virtual
age W(¢) is defined by Eq. (4) as
In[(n/B)(exp{pr} — 1) + 1]

n

It is clear that, owing to n> f3, inequality W(¢)>t holds
for t>0. A similar result can be obtained for the virtual age
w(1).

W(t) =

Applying the definition of the failure rate to Eq. (2):

dFy(W(@) 1
dt Fo(W (1)

A1) = = w( (W (D). ®)

If, for instance, the failure rate in a baseline regime is a
constant, then A4¢) is proportional to the rate of
degradation W(¥).

3. Recalculated virtual age

Let an item start operating in a baseline regime at ¢t = 0,
which is switched at ¢ = x to a more severe one. The virtual
age immediately after the switching, in accordance with
Definition 1, is ¥, = W~ '(x), where the new notation V. is
used for convenience.

Assume now that the governing Cdf after the switching
is Fy(?) and that the Cdf of the remaining lifetime is
F(t|V,), defined by the following equation:

Ft+Vy)

Fy(#lVy) =1- Fs(Vx)

(6)
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Thus, an item starts operating in the second regime
having a starting age V', defined for the Cdf Fy(¢). It should
be emphasized that the form of the lifetime Cdf after the
switching given by Eq. (6) is our assumption and that it does
not follow directly from the ALM (2). For example, the
starting age could differ from V', or (and) the governing
distribution could differ from Fy(f) (see also the remarks at
the end of this section). On the other hand, we can proceed
on the basis of ALM (2) in a different, more justified way
and obtain the Cdf of an item’s lifetime for the whole
interval [0,00).

According to our interpretation of the previous section,
the rate of degradation is 1 in 7€[0,x). Assume that the
switching at ¢ = x results in the rate w(z)>1 in [x,0),
where w(?) is defined by the ALM (2)—(3). Note that this is
an important assumption on the nature of the impact of
regime switching in the framework of the ALM. The
alternative option, which is not discussed here, is the
corresponding jump from the curve Ay(?) to the curve A4(f)
at t = x. This option can be interpreted in the framework
of the proportional hazards (PH) model, which is usually
not suitable for the lifetime modelling of degrading objects
[6]. Under the stated assumptions, the item’s lifetime Cdf in
[0,00) to be denoted by F(f) can be written as [3]

Fy(?), 0<t<x,
Fus(t) = Fo(x+ [Tw(u)du), x<t<oo. M

Transforming the second row on the right-hand side of
this equation results in

Fy (x + /I W(u)du) =Fy (/[ w(u)du)
X 7(x)

= Fb( W([) — W(T(X)), (8)

where 7(x)<x is uniquely defined from the equation:

X
X = / w(u)du = W(x) — W(t(x)). 9)
7(x)

Assume firstly, hypothetically that an item is operating
in [0,00) in the second regime. Eq. (9) means that the
corresponding cumulative degradation in [7(x),x) in this
case is equal to the cumulative degradation in the baseline
regime in [0,x), which is x. Therefore, an age of an item in
our model (7) just after the switching to a more severe
regime can be defined as ¥, = x — 7(x), as if an item was
switched into operation at time instant 7(x). Note that V'
is defined via 7(x), and that this approach is based on the
considered specific model. Let us call ¥, the recalculated
virtual age.

Definition 2. Let an item start operating at ¢ =0 in the
baseline regime and be switched to a more severe one at
t = x. Assume that the corresponding Cdf in [0, c0) is given
by Eq. (7). N

Then the recalculated virtual age V', after switching at
t = x is defined as x—1(x), where 7(x) is a unique solution
of Eq. (9).

We are now interested in comparing ¥, with ¥, and will
show that under certain assumptions these quantities are
equal. Eq. (9) has the following solution:

(x) = W W (x) — x).

As V,= W '(x), equation V= ¥V, can be written in
the form of the following functional equation:
x— W lx)= W (W(x) - x).

Applying operation W(-) to both parts of this equation
gives:
W(x — W '(x) = W(x) — x.

It is easy to show (see also Example 2) that a linear
function W(¢) = wt is a solution to this equation. It is also
clear that it is the unique solution, as the functional
equation f{x+y) = flx)+f(y) for continuous f{x) has only
the linear solution. Therefore, the recalculated virtual age
in this case is equal to the statistical virtual age. The
following example shows that the function defined by the
second row on the right-hand side of Eq. (7) is a segment of
the Cdf Fy(¢) for > x also only for this specific linear case.

Example 2. In accordance with Egs. (2) and (8):
Fr(w (1 — 1(x))) = F(t — 1(x)),

where 7(x) is obtained from a simplified Eq. (8):
X = /T; wdu = 1(x) = x(wliv—l)

and
Ve=x—1x)=x/w; V,=W(x)=x/w.

It follows from this example that the Cdf Fy(¢) for the
linear W(t) can be defined in the way usually referred to in
the literature on accelerated life testing (e.g., [2]):

F
Foi) = { (1),

0<r<x,

Fy(t—1(x)), x<t<oo.

This Cdf can be equivalently written as

Fi(2),
Ful =\ k= x+ 70,

0<r<ux,
X<I1<o0.

The Cdf of the remaining at ¢t = x time, in accordance
with this equation, is

Fy(t—x+ V) — Fp(x)

Fb(x) = Fs(t |Vx):

t—x=1>0,

where equations Fy(x) = Fy(V,) (owing to (2)) and V, =
V. were used. Note, that the first equation is equivalent to
Eq. (4). Therefore, the remaining lifetimes obtained via the
rate of degradation concept and via Eq. (6) are equal for
the linear scale function: W(r) = wt. We think that the first
concept is somehow better ‘physically motivated’.
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The failure rate which corresponds to the Cdf Fy(¢) is

0<r<x,

} _ ;“b(t)a
fos(¥) = At —1(x)) = At —x+ V), x<t<oo.

This form of the failure rate is often referred to as the
‘Sedjakin principle’ [6]. In his original work, Sedjakin [7]
defines a notion of ‘resource’ as a corresponding cumula-
tive failure rate and assumes that after the switch the
further operation of the item depends on the history only
via this resource and does not depend on how this resource
was ‘acquired’ previously. This assumption, in fact, leads
to Eq. (4), which describes the equality of resources for
different regimes, and eventually to the definition of virtual
age in our meaning.

What happens if the function W(¢) is non-linear?
Nothing changes in the first approach, which we recom-
mend to use in this case. The virtual age V, = W~ '(x) is
defined in the same way and the Cdf of the remaining
lifetime is also defined by Eq. (6). On the other hand, the
virtual age ¥, = x — 7(x) can be obtained using the same
relations as in the linear case, but now V,# V¥, and the
second row on the right hand side of (7) cannot be
transformed to the segment of the Cdf Fy(¢). Therefore, an
appealing virtual age interpretation of the age recalculation
model at switching (with a governing Cdf Fy(f)) does not
exist any more. Although we can formally define a different
Cdf and the corresponding virtual age as a starting age for
F(?), this approach does not seem to be as well justified as
in the linear case.

4. Concluding remarks

The developed virtual age concept can be also applied to
repairable systems. Keeping the notation but not the literal
meaning, assume that initially the lifetime of a repairable
item is characterized by the Cdf Fy(f) and the imperfect
repair changes it to Fy(¢|V), where V' is the virtual age just
after repair at r = x. (As a special case, the distribution can

be the same: Fy(¢f) = Fy,(¢).) Thus, we have two factors.
First, the imperfect repair changes the Cdf from Fy(¢) to
Fy(?) and it is reasonable to assume that the corresponding
lifetimes are ordered as in (1). The parameters of the Cdf
Fy(?) could be changed by the repair action. If, e.g.,
F(t) = l—exp{—At*}; 4, a>0 is a Weibull distribution,
then a smaller value of parameter A will result in ordering
(1). Secondly, the remaining after the imperfect repair
deterioration defines the corresponding initial (virtual) age
V. for distribution F(#), which was called in Finkelstein [§]
“the hidden age of the Cdf after the change of parameters”.
This model describes the dependence between lifetimes
before and after the repair, which usually exists for
degrading objects. If V', = 0, the lifetimes are independent
but the model still can describe some kind of imperfect
repair, as ordering (1) holds. Specifically, the consecutive
cycles of the geometric process [8] present a relevant
example. The g-renewal process of imperfect repair [9] is
also another meaningful example.
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